在考研这场激烈的知识角逐中,计算机专业宛如一座充满无限可能与挑战的科技高峰,吸引着无数怀揣着技术梦想的学子奋勇攀登。计算机领域的知识体系犹如一张错综复杂却又精密有序的巨网,涵盖了众多的核心课程。每一个知识点都像一课璀璨的星辰,看是独立却又相互关联,共同构成了计算机科学的浩瀚宇宙。其中晦涩难懂的概念,抽象复杂的逻辑以及海量繁杂的信息,让众多学子仿佛置身于茫茫大海中,找不到方向。而本篇文章将为这些迷失方向的同学,指明前行的路。
一、考研计算机知识点:队列和栈结构的概念理解
栈是仅限制在表的一端进行插入和删除运算的线性表,称插入、删除这一端为栈顶。表中无元素时为空栈。栈的修改是按后进先出的原则进行的。通常栈有顺序栈和链栈两种存储结构。
队列是一种运算受限的线性表,插入在表的一端进行,而删除在表的另一端进行,允许删除的一端称为队头,允许插入的一端称为队尾,队列的操作原则是先进先出的。队列也有顺序存储和链式存储两种存储结构。
二、考研计算机知识点:完全二叉树中有关结点个数计算
完全二叉树的定义:深度为k,有n个结点的二叉树当且仅当其每一个结点都与深度为k的满二叉树中编号从1至n的结点一一对应时,称为完全二叉树。
完全二叉树的叶子数为(n + 1) / 2取下整。
三、考研计算机知识点:二叉树的遍历
遍历的过程就是把非线性结构的二叉树中的结点排成一个线性序列的过程。
二叉树遍历方法可分为两大类,一类是“宽度优先”法,即从根结点开始,由上到下,从左往右一层一层的遍历;另一类是“深度优先法”,即一棵子树一棵子树的遍历。
从二叉树结构的整体看,二叉树可以分为根结点,左子树和右子树三部分,只要遍历了这三部分,就算遍历了二叉树。设D表示根结点,L表示左子树,R表示右子树,则DLR的组合共有6种,即DLR,DRL,LDR,LRD,RDL,RLD。若限定先左后右,则只有DLR,LDR,LRD三种,分别称为先(前)序法(先根次序法),中序法(中根次序法,对称法),后序法(后根次序法)。三种遍历的递归算法如下:
1.先序法(DLR)
若二叉树为空,则空操作,否则:访问根结点,先序遍历左子树,先序遍历右子树。
2.中序法(LDR)
若二叉树为空,则空操作,否则:中序遍历左子树,访问根结点,中序遍历右子树.
3.后序法(LRD)
若二叉树为空,则空操作,否则:后序遍历左子树,后序遍历右子树,访问根结点。
总结语:希望以上与专业知识点相关的详细解析,能够帮助计算机专业考研的同学们在这场充满艰辛与汗水的路上,不断突破自己,并收获满满。计算机知识就像一把神奇的钥匙,它不仅能够为学子们打开通往更高学术殿堂的大门,更能让学子们领略到了科技世界的无穷魅力。愿每一个怀揣计算机梦想的考研人都能够梦想成真。
【27考研辅导课程推荐】:27考研集训课程,VIP领学计划,27考研VIP全科定制套餐(公共课VIP+专业课1对1) , 这些课程中都会配有内部讲义以及辅导书和资料,同时会有教研教辅双师模式对大家进行教学以及督学,并配有24小时答疑和模拟测试等,可直接咨询在线客服老师领取大额优惠券。
热门下载
资料下载
院校解析
真题解析
考研数学
考研英语
考研政治
考研备考