在考研各科目中,很多考生认为数学科目难度比较大,不知道该如何着手准备,具体怎么规划、如何提高所需能力等。下面启航小编为大家整理了“2023考研数学复习指导:线性方程组考点”一文,希望能为大家带来一些帮助。
第一,齐次线性方程组有无零解和非齐次线性方程组是否有解的判定。对于齐次线性方程组,当方程组的方程个数和未知量的个数不等时,可以按照系数矩阵的秩和未知量个数的大小关系来判定,还可以利用系数矩阵的列向量组是否相关来判定;当方程组的方程个数和未知量个数相同时,可以利用系数行列式与零的大小关系来判定,还可以利用系数矩阵有无零特征值来判定;对于非齐次线性方程组,可以利用系数矩阵的秩和增广矩阵的秩是否相等即有关矛盾方程来判定,还可以从一个向量可否由一向量组线性表出来判定;当方程个数和未知量个数相等时,可以利用系数行列式是否为零来判定非齐次线性方程组的唯一解情况;数一、数二和数三的一个小题就是利用 和系数行列式为0来判定非齐次线性方程组有无穷多解的。
第二,齐次线性方程组的非零解的结构和非齐次线性方程组解的的无穷多解的结构问题。如果齐次线性方程组有无穷多个非零解时,其通解是由其基础解系来表示的;如果非齐次线性方程组有无穷多解时,其通解是由对应的齐次线性方程组和通解加本身一个特解所构成;
第三,齐次线性方程组基础解系的求解与证明。利用系数矩阵的极大线性无关组的内容进行分析;
第四,齐次(非齐次)线性方程组的求解(含对参数取值的讨论)。如果方程组的方程个数和未知量个数不相等时,只能对其系数矩阵或增广矩阵进行初等行变换,化为阶梯形矩阵来进行讨论;如果方程组的方程个数和未知量个数相同时,初等行变换和行列式可以结合起来一起进行分析和讨论;
第五,两个方程组的公共解、通解问题。
以上是启航小编为大家带来的考研数学线性方程组的相关内容,本栏目将持续更新考研备考信息,大家保持关注!
【26考研辅导课程推荐】:26考研集训课程,VIP领学计划,26考研VIP全科定制套餐(公共课VIP+专业课1对1) , 这些课程中都会配有内部讲义以及辅导书和资料,同时会有教研教辅双师模式对大家进行教学以及督学,并配有24小时答疑和模拟测试等,可直接咨询在线客服老师领取大额优惠券。
热门下载
资料下载
院校解析
真题解析
考研数学
考研英语
考研政治
考研备考