对于很多想要参加23年研究生考试的小伙伴来说,数学这个公共科目是很多小伙伴都需要格外关照的一个科目。因为,考研数学还是存在一定的考试难度的。另外,考研数学备考中那些易混知识点,大家需要提前了解,并针对性的研究学习一下。下面是小编给大家准备的考研数学备考易混知识点总结,感兴趣的抓紧时间了解一下吧;
一、几个易混概念:连续,可导,存在原函数,可积,可微,偏导数存在他们之间的关系式怎么样的?存在极限,导函数连续,左连续,右连续,左极限,右极限,左导数,右导数,导函数的左极限,导函数的右极限。
二、罗尔定理:设函数f(x)在闭区间[a,b]上连续(其中a不等于b),在开区间(a,b)上可导,且f(a)=f(b),那样至少存在一点&xi&isin(a、b),使得f‘(&xi)=0。罗尔定理是以法国数学家罗尔的名字命名的。罗尔定理的三个已知条件的意义,①f(x)在[a,b]上连续表明曲线连同端点在内是无缝隙的曲线②f(x)在内(a,b)可导表明曲线y=f(x)在每一点处有切线存在③f(a)=f(b)表明曲线的割线(直线AB)平行于x轴罗尔定理的结论的直几何意义是:在(a,b)内至少能找到一点&xi,使f’(&xi)=0,表明曲线上至少有一点的切线斜率为0,从而切线平行于割线AB,与x轴平行。
三、.泰勒公式展开的应用专题:相信非常多同学看到泰勒公式就哆嗦,由于咋一看很长很恐怖,瞬间大脑空白,身体失重的感觉。其实在我搞明白一下几点后,原来的症状就没有了。1.甚么情况下要实行泰勒展开2.以哪一点为中心实行展开3.把谁展开4.展开到几阶?
四、应用多次中值定理的专题:大部分的考研题,一般要考察你应用多次中值定理,主要的就是要培养自我对这种题目标敏感度,要很快反映老师出这题考哪几个中值定理,我的敏感性是靠自我多训练综合题培养出来的。我会经常会去温习,那样我对中值定理的题目早已没有那种刚学高数时的害怕之极。要想对微分中值定理这块的题目有条理的把握,看我这个总结定会事半功倍的。
五、对称性,轮换性,奇偶性在积分(重积分,线,面积分)中的综合应用:这几乎每年主要,要么小题中考,要么大题中要用,这是必需把握的知识,但是往往不是那样容易就靠做3,4个题目就能了解这知识点的应用究竟有多广泛。我们做积分题,尤其多重积分和线面积分,死算也许能算出结果,但是要是能用以上性质,那可真是三下五除二搞定,这方面的感觉相信大家有过,可是或许仅仅是昙花一现,由于你做出来了以为之后就必定会在相似的题目中用,其实不然,由于仅仅靠几道题目很大程度上不能给你留下太深刻的印象,下次轮到的时候或许就是考场上了,你可能顿时苦思冥想,最终还是choose了最傻的办法,浪费了宝贵时间。说这些其实就是说明,考场上的正常或超常发挥是建立在平时踏实做,见识广,严要求的基本上。
以上就是小编给大家整理的关于23年考研数学备考中可能出现的易混知识点总结,希望能够对大家有所帮助。如果还有其他内容想要了解的,可以咨询一下我们专业的辅导老师。
【26考研辅导课程推荐】:26考研集训课程,VIP领学计划,26考研VIP全科定制套餐(公共课VIP+专业课1对1) , 这些课程中都会配有内部讲义以及辅导书和资料,同时会有教研教辅双师模式对大家进行教学以及督学,并配有24小时答疑和模拟测试等,可直接咨询在线客服老师领取大额优惠券。
热门下载
资料下载
院校解析
真题解析
考研数学
考研英语
考研政治
考研备考