大家都知道,在考研数学部分中,高等数学的难度是相对较大的。那么如何拿下高数这个“山头”那?大家可以通过积累易错考点来更好的备考考研。以下是小编为大家整理的“2021考研数学高数中的易错考点”相关内容,希望对大家有所帮助!
1.函数连续是函数极限存在的充分条件。若函数在某点连续,则该函数在该点必有极限。若函数在某点不连续,则该函数在该点不一定无极限。
2,若函数在某点可导,则函数在该点一定连续。但是如果函数不可导,不能推出函数在该点一定不连续。
3.基本初等函数在其定义域内是连续的,而初等函数在其定义区间上是连续的。
4.在一元函数中,驻点可能是极值点,也可能不是极值点。函数的极值点必是函数的驻点或导数不存在的点。
5.无穷小量与有界变量之积仍是无穷小量。
6.可导是对定义域内的点而言的,处处可导则存在导函数,只要一个函数在定义域内某一点不可导,那么就不存在导函数,即使该函数在其它各处均可导。
7.在求极限的问题中,极限包括函数的极限和数列的极限,但在考试中一般出的都是函数的极限,求函数的极限中,主要是掌握公式,有些不常见的公式一定要记熟,这种类型的题一般属于简单题,但往更难一点的方向出题的话,它会和变上限的定积分联系在一起出题。
8.在运用两个重要极限求函数极限的时候,一定要首先把所求的式子变换成类似于两个重要极限的形式,其次还需要看自变量的取极限的范围是否和两个重要极 限一样。
9.介值定理和零点定理的巧妙运用关键在于,观察和变换所要证明的式子的形式,构造辅助函数。
以上就是小编为大家准备的“2021考研数学高数中的易错考点”,预祝大家成功上岸!
【26考研辅导课程推荐】:26考研集训课程,VIP领学计划,26考研VIP全科定制套餐(公共课VIP+专业课1对1) , 这些课程中都会配有内部讲义以及辅导书和资料,同时会有教研教辅双师模式对大家进行教学以及督学,并配有24小时答疑和模拟测试等,可直接咨询在线客服老师领取大额优惠券。
热门下载
资料下载
院校解析
真题解析
考研数学
考研英语
考研政治
考研备考