考研数学高数常考考点,二重积分求导,关于这方面的知识点如果想了解的话,赶紧来一起看看吧。
二重积分求导是考研数学常考点之一,下面帮大家按例子解析:
下面的式子对t求导∫d(x)∫arctanH(y)dy=?
其中
第一个∫上限是t 下限是1
第二个∫上限是f(x) 下限是0
要过程方法
请写下你们的答案
假设∫arctanH(y)dy=F(x)
则可知∫d(x)∫arctanH(y)dy=∫F(x)dt
所以求导可知d(∫F(x)dt)/dt=F(t)∫arctanH(y)dy=F(x)则F(t)=∫arctanH(y)dy
上限是f(t) 下限是0
所以对t求导∫d(x)∫arctanH(y)dy=
为 =∫arctanH(y)dy
上限是f(t) 下限是0
【26考研辅导课程推荐】:26考研集训课程,VIP领学计划,26考研VIP全科定制套餐(公共课VIP+专业课1对1) , 这些课程中都会配有内部讲义以及辅导书和资料,同时会有教研教辅双师模式对大家进行教学以及督学,并配有24小时答疑和模拟测试等,可直接咨询在线客服老师领取大额优惠券。
热门下载
资料下载
院校解析
真题解析
考研数学
考研英语
考研政治
考研备考