西北工业大学高等代数考研大纲_院校考研大纲_院校考研大纲考研网 - 启航考研院校库

公司logo

西北工业大学

985
211
34所
双一流

联系方式:029-88430614

  • 地区:陕西
  • 类型:理工类
  • 隶属:中央部委

学科建设:院士:28 硕士点:一级32 博士点:一级22

院校排名:综合排名:27 理工类:10

地址:西安市友谊西路127号 邮编:710072

首页

西北工业大学高等代数考研大纲

西北工业大学 考研大纲

2024-08-23

2305

西北工业大学研究生考试范围有哪些?西北工业大学高等代数考研大纲已经公布,25考研考生现阶段可以用来参考,但是等到9、10月份大纲公布时,25考研考生应以学校最新公布的信息为准。以下是详细介绍。

《高等代数》考试大纲考试内容

(一) 行列式

1.n阶行列式的概念和基本性质。

2.行列式按一行(列)展开定理,Laplace定理,行列式乘积法则。

(二) 矩 阵

1.矩阵的加法、乘积、方幂、转置等运算及性质。

2.矩阵的秩的概念及性质。

3.矩阵的初等变换,等价矩阵,等价标准形。

4.初等矩阵的概念和性质。

5.逆矩阵的概念和性质,矩阵可逆的充分必要条件,用伴随矩阵及初等变换求逆矩阵。

6.分块初等矩阵及应用。

(三) 向 量

1.向量的概念、运算,向量的内积。

2.向量组的线性相关与线性无关。

3.向量组的极大线性无关组,向量组的秩。

4.等价向量组的概念和性质。

5.向量空间的概念,基与正交基、规范正交基。

(四) 线性方程组

1.Cramer法则。

2.求解线性方程组的消元法。

3.线性方程组有解的判定,齐次线性方程组有非零解的充分必要条件。

4.齐次线性方程组的基础解系和通解,解空间。

5.非齐次线性方程组的解向量的性质和通解。

(五) 相似矩阵

1.矩阵的特征值与特征向量的概念、性质。

2.相似变换、相似矩阵的概念及性质。

3.矩阵可相似对角化的充分必要条件及相似对角矩阵。

4.正交矩阵、实对称阵及其性质,实对称阵正交相似于对角阵的计算。

5.l‐矩阵及其标准形,行列式因子,不变因子,初等因子。

6.Jordan标准形及相似变换阵的计算。

7.Hamlton-Cayley定理,最小多项式。

(六) 二次型

1.二次型的矩阵表示及秩。

2.用可逆线性变换化二次型为标准形(配方法,初等变换法)。

3.合同矩阵、对称阵在合同变换下的标准形。

4.用正交变换化二次型为标准型。

5.一般数域、复数域、实数域上二次型的标准形和规范形,惯性定理。

6.正、负定二次型(或正、负定矩阵)的判定。

(七) 线性空间

1.线性空间、基底、维数及坐标等概念。

2.线性子空间及其交与和的基与维数。

3.线性空间的基变换和过渡矩阵。

4.线性子空间的直和。

5.线性空间的同构。

(八) 线性变换

1.线性变换的概念及矩阵表示。

2.象子空间与核子空间的基与维数。

3.线性变换的运算及在给定基下的矩阵。

4.线性变换的特征值与特征向量。

5.不同基下线性变换的矩阵间关系及其化简。

6.不变子空间。

(九) 欧氏空间

1.元素的内积、范数、夹角。

2.Gram-Schmidt正交化过程,规范正交基。

3.正交子空间和正交补。

4.正交变换和对称变换的概念和性质。

考研专业课难不难,一方面取决于院校题目及考试内容,另一方面也取决于考生是否有效备考,专业课备考方面如果大家想要专业课老师的指导,大家可以在客服窗口留言咨询。

推荐阅读:

26考研:临床医学考研考哪些科目?

上海考研最容易的大学

毕业了,考公务员难还是考研难?

【26考研辅导课程推荐】:26考研集训课程,VIP领学计划,26考研VIP全科定制套餐(公共课VIP+专业课1对1) , 这些课程中都会配有内部讲义以及辅导书和资料,同时会有教研教辅双师模式对大家进行教学以及督学,并配有24小时答疑和模拟测试等,可直接咨询在线客服老师领取大额优惠券。

END

涵盖31省,862所院校,756个专业

为考研学子提供院校咨询专业咨询备考咨询

使用声明:

1.本查询系统的信息主要来源于各研招单位招生网及对外公开的数据、国家官网公布的数据

2.本平台历年高校数据仅供考生参考,如各招生数据与院校公布数据不一致,请以各高校正式公布的数据为准。

 一对一答疑

获取一对一答疑

首页 | 研究生兼职 | 付款方式 | 集训基地 | 关于我们  | 产品合作  | 网站地图

Copyright©1998-2020 jixun.iqihang.com 京ICP备16065416号-7

北京市启航世纪科技发展有限公司 服务热线:400-108-7500

京公网安备 11010802028430号