哈尔滨工业大学数学学院2023年硕士研究生考试大纲:612数学_院校考研大纲_院校考研大纲考研网 - 启航考研院校库

公司logo

哈尔滨工业大学

985
211
34所
双一流

联系方式:0451-86416113

  • 地区:黑龙江
  • 类型:理工类
  • 隶属:教育部

学科建设:院士:38 硕士点:一级41 博士点:一级27 国家重点学科:一级9,二级6

院校排名:综合排名:19 理工类:6

地址:哈尔滨市南岗区西大直街92号

首页

哈尔滨工业大学数学学院2023年硕士研究生考试大纲:612数学

2023年硕士研究生考试大纲

2023-01-18

6259

考生请注意!【哈尔滨工业大学2023年硕士研究生考试大纲】已经在官网发布公告啦!内容整理如下,想要参加该院校2023硕士研究生相关专业考试的考生快来看看吧。

数学学院硕士研究生入学考试大纲

考试科目名称:数学分析 考试科目代码:[612]

一、考试要求:

1)要求考生熟练掌握数学分析的基本概念、基本理论和基本方法。

2)要求考生具有严格的数学论证能力、举反例能力和基本计算能力。

3)要求考生了解数学分析中的基本概念、理论、方法的实际来源和历史背景,清楚它们的几何意义和物理意义,初步具备应用数学分析解决实际问题能力。

二、考试内容:

1) 极限和连续

a.熟练掌握数列极限与函数极限的概念,包括数列的上、下极限和函数的左、右极限。

b.掌握极限的性质及四则运算性质,特别要能够熟练运用两面夹原理和两个特殊极限。

c.熟练掌握实数系的基本定理:区间套定理,确界存在定理,单调有界原理,Bolzano-Weierstrass定理,Heine-Borel有限覆盖定理,Cauchy收敛准则;并理解相互关系。

d.熟练掌握函数连续性的概念及相关的不连续点类型。能够运用函数连续的四则运算与复合运算性质以及相对应的无穷小量的性质;并理解两者的相互关系。

e.熟练掌握闭区间上连续函数的性质:有界性定理、最值定理、介值定理和Contor定理。

2) 一元函数微分学

a.理解导数和微分的概念及其相互关系,理解导数的几何意义和物理意义,理解函数可导性与连续性之间的关系。

b.熟练掌握函数导数与微分的运算法则,包括高阶导数的运算法则,会求分段函数的导数。

c.熟练掌握 Rolle中值定理,Lagrange中值定理和 Cauchy中值定理以及 Taylor公式。

d.能够用导数研究函数的单调性、极值,最值和凸凹性。

e.掌握用 L’Hospital法则求不定式极限的方法。

3) 一元函数积分学

a.理解不定积分的概念。掌握不定积分的基本公式,换元积分法和分部积分法,会求有理函数、三角有理函数和简单元理函数的积分。

b.掌握定积分的概念,包括 Darboux和,上、下积分及可积条件与可积函数类。

c.掌握定积分的性质,熟练掌握微积分基本定理,定积分的换元积分法和分部积分法。

d.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积,平面曲线的弧长,旋转体的体积与侧面积,平行截面面积已知的立体体积,变力做功和物体的质量与质心)。

e.理解广义积分的概念。熟练掌握判断广义积分收敛的比较判别法,Abel判别法和 Dirichlet判别法;其中包括积分第二中值定理。

4) 无穷级数

a.理解数项级数敛散性的概念,掌握数项级数的基本性质。

b.熟练掌握正项级数敛散的必要条件,比较判别法,Cauchy判别法,D’Alembert判别法与积分判别法。

c.熟练掌握任意项级数绝对收敛与条件收敛的概念及其相互关系。熟练掌握交错级数的 Leibnitz判别法。掌握绝对收敛级数的性质。

d.熟练掌握函数项级数一致收敛性的概念以及判断一致收敛性的 Weierstrass判别法。Abel判别法和 Dirichlet判别法。熟练掌握一致收敛级数的性质。

e.掌握幂级数及其收敛半径的概念,包括 Cauchy-Hadamard定理和 Abel第一定理。

f.熟练掌握幂级数的性质。能够将函数展开为幂级数。了解 Weierstrass 逼近定理。

g.了解 Fourier级数的概念与性质以及敛散性的判别法。

5) 多元函数微分学与积分学

a.理解多元函数极限与连续性,偏导数和全微分的概念,会求多元函数的偏导数与全微分。

b.掌握隐函数存在定理。

c.会求多元函数极值和无条件极值,了解偏导数的几何应用。

d.掌握重积分、曲线积分和曲面积分的概念与计算。

e.熟练掌握 Gauss公式、Green公式和 Stokes公式及其应用。

6) 含参变量积分

a.了解含参变量常义积分的概念与性质。

b.掌握含参变量广义积分的一致收敛性的概念及其判别法。掌握一致收敛的含参变量广义积分的性质。

三、试卷结构:

1) 考试时间:180分钟,满分:150分

2) 题型结构

a: 论证与举反例(105-135分)

b: 基本计算(15-45分)

四、参考书目:

1.《数学分析》(上、下册),复旦大学数学系、欧阳光中等编,高等教育出版社,2007年,第三版。

2.《数学分析习题集》,北京大学数学系、林源渠等编,高等教育出版社。

原标题:哈尔滨工业大学2023年数学学院硕士生入学考试大纲

文章来源:http://math.hit.edu.cn/2022/0830/c10380a280525/page.htm

【26考研辅导课程推荐】:26考研集训课程,VIP领学计划,26考研VIP全科定制套餐(公共课VIP+专业课1对1) , 这些课程中都会配有内部讲义以及辅导书和资料,同时会有教研教辅双师模式对大家进行教学以及督学,并配有24小时答疑和模拟测试等,可直接咨询在线客服老师领取大额优惠券。

END

涵盖31省,862所院校,756个专业

为考研学子提供院校咨询专业咨询备考咨询

使用声明:

1.本查询系统的信息主要来源于各研招单位招生网及对外公开的数据、国家官网公布的数据

2.本平台历年高校数据仅供考生参考,如各招生数据与院校公布数据不一致,请以各高校正式公布的数据为准。

 一对一答疑

获取一对一答疑

首页 | 研究生兼职 | 付款方式 | 集训基地 | 关于我们  | 产品合作  | 网站地图

Copyright©1998-2020 jixun.iqihang.com 京ICP备16065416号-7

北京市启航世纪科技发展有限公司 服务热线:400-108-7500

京公网安备 11010802028430号