直接输入手机网址:
m-jixun.iqihang.com
扫一扫进群
扫一扫关注我们
扫一扫关注我们
2022年硕士研究生考试大纲
2022-12-22
9523
2022年考研即将开始,希望22考研的考生们根据大纲内容进行查漏补缺,23考研的考生们可以根据大纲内容进行备考啦!以下是小编为大家整理的【长沙理工大学2022年硕士研究生考试大纲】考试大纲具体内容,希望大家备考顺利哦~
科目代码:837 科目名称:高等代数
一、考试要求
1、掌握一元多项式相关概念,带余除法,能求两个多项式的最大公因式,因式分解定理,重因式,多项式的根在探讨多项式的整除性与不可约性中的应用,复系数与实系数多项式的因式分解,有理系数多项式的根及艾森斯坦因判别法。
2、理解行列式的概念和基本性质,掌握行列式展开定理及行列式的计算。
3、掌握向量组的线性相关与线性无关性、向量组的秩及矩阵的秩的概念,能进行相关的计算和证明,熟练掌握线性方程组有解的判别、线性方程组解的结构及线性方程组的解法及有关证明。
4、掌握矩阵的概念及矩阵的运算,矩阵乘积的行列式与秩的性质,矩阵可逆的充要条件,逆矩阵的求法,矩阵方程的求解,矩阵与分块矩阵的初等变换及(广义)初等矩阵在矩阵的行列式与秩的计算与证明中的应用。
5、理解二次型及其矩阵表示、标准形、规范形及矩阵合同的概念,掌握实二次型的标准形的求法、惯性定理、二次型(矩阵)正定的等价条件及其在相关计算和证明中的应用。
六、理解线性空间中关于维数、基与坐标、基变换与坐标变换、线性子空间、子空间的交与和及直和、线性空间的同构的概念,掌握相关的计算和证明。
七、理解线性变换的定义、线性变换的运算、线性变换的矩阵、线性变换(矩阵)特征值与特征向量、线性变换(矩阵)的对角化、线性变换的值域与核、不变子空间、最小多项式的概念及有关性质,掌握相关的计算和证明,掌握Hamlton-Cayley定理及其应用。
八、理解λ-矩阵、λ-矩阵在初等变换下的标准形、不变因子、行列式因子、初等因子、Jordan块与Jordan标准形、伴侣阵与有理标准形的概念及有关性质,掌握相关的计算和证明,掌握矩阵相似的条件,能求矩阵的若当标准形和矩阵的有理标准形。
九、理解欧氏空间、度量矩阵、标准正交基、正交变换、对称变换、子空间正交及正交补的概念及有关性质,掌握Schmit正交化标准正交基的方法,掌握实对称矩阵的性质、用正交变换化实二次型为标准形及实对称矩阵的正交对角化的相关计算与证明。
二、考试内容
1、一元多项式,整除的概念,最大公因式,因式分解定理,重因式,多项式函数,复系数与实系数多项式的因式分解,有理系数多项式。
2、行列式的概念和基本性质,行列式展开定理,行列式的计算。
3、向量的概念,向量组的线性相关与线性无关性,向量组的秩,矩阵的秩,线性方程组有解的判别,线性方程组解的结构,线性方程组的解法 。
4、矩阵的运算,矩阵乘积的行列式与秩,矩阵的逆,矩阵的分块,初等矩阵,分块乘法的初等变换。
5、二次型及其矩阵表示,标准形及规范形,正定二次型。
6、线性空间的定义及简单性质,维数,基与坐标,基变换与坐标变换,线性子空间,子空间的交与和及直和,线性空间的同构。
7、线性变换的定义,线性变换的运算,线性变换的矩阵,特征值与特征向量,对角矩阵,线性变换的值域与核,不变子空间,最小多项式。
8、λ-矩阵的定义,λ-矩阵在初等变换下的标准形,不变因子,行列式因子,初等因子,矩阵相似的条件,矩阵的若当标准形,矩阵的有理标准形。
9、欧氏空间定义与基本性质,标准正交基,同构,正交变换,子空间,实对称矩阵的标准形。
三、题型
试卷满分为150分,其中:计算题占50%,证明题占50%。
四、参考教材
1.《高等代数》.北京大学数学系几何与代数教研室编.王萼芳,石生明修订,高等教育出版社,2003,第三版。
原标题:长沙理工大学2022年硕士研究生入学考试自命题考试大纲
文章来源:https://www.csust.edu.cn/yjsy/info/1113/5979.htm
【26考研辅导课程推荐】:26考研集训课程,VIP领学计划,26考研VIP全科定制套餐(公共课VIP+专业课1对1) , 这些课程中都会配有内部讲义以及辅导书和资料,同时会有教研教辅双师模式对大家进行教学以及督学,并配有24小时答疑和模拟测试等,可直接咨询在线客服老师领取大额优惠券。
涵盖31省,862所院校,756个专业
为考研学子提供院校咨询专业咨询备考咨询
使用声明:
1.本查询系统的信息主要来源于各研招单位招生网及对外公开的数据、国家官网公布的数据
2.本平台历年高校数据仅供考生参考,如各招生数据与院校公布数据不一致,请以各高校正式公布的数据为准。
同类院校
一对一答疑
首页 | 研究生兼职 | 付款方式 | 集训基地 | 关于我们 | 产品合作 | 网站地图
Copyright©1998-2020 jixun.iqihang.com 京ICP备16065416号-7
北京市启航世纪科技发展有限公司 服务热线:400-108-7500
京公网安备 11010802028430号